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Abstract— Advancements in statistical analysis methods and 

the rapid proliferation of electronic medical records in the U.S. 
health care system have created a tantalizing area for large-scale 
computational analysis of natural language: the ability to pull 
vital health information from unstructured clinical notes. In this 
challenge, we experiment with methods to extract family history 
from free text, with special attention to 1) extraction of relevant 
family members and their relations to the patient, and 2) entity 
recognition of disease state observations. In test, our final system 
performed at an overall F1 of 59.25%. 

Keywords—natural language processing; named entity 
recognition 

I. INTRODUCTION 
With the advent of large-scale natural language 

processing systems and widespread adoption of 
electronic health records comes the opportunity to 
uncover valuable information in unstructured 
clinical notes, at scale [1,2]. A key area of interest 
for clinical practice and research is the ability to 
extract family histories from such free text. Recent 
clinical record entry products have provided 
structured methods for entering family histories, 
which follow a predictable ontology. However, an 
automated system to extract this information from 
the vast body of unstructured historical medical 
records would yield untold benefits for research. 

In this paper, we report a combined rule-based 
and statistical modeling approach to extracting 
family history mentions from unstructured text. The 
Family History Information Extraction (FHE) 
subtask for the BioCreative/OHNLP 2018 Challenge 
entailed 1) extraction of family members (e.g. 
father, mother, etc.) and relation sides (maternal, 
paternal, or NA) and 2) entity detection of observed 
disease names from samples of unstructured text. [3]  

Our system performs family member extraction 
(FM) and observation entity recognition (OB) in two 
separate subtasks per document, merging results by 
document at the end. For FM, a rule-based system 

was used to achieve an F1 score of 0.5195 against 
the test set. For observations, a bidirectional LSTM-
CRF (BI-LSTM-CRF) model was used to achieve 
an F1 score of 0.624 against the test set.  

II. METHODS 

A. Dataset 
The data provided for this workshop are a 

synthetic set of 1694 sentences over 99 documents 
with family members and disease states randomly 
shuffled from a real-world collection of Patient 
Provided Information questionnaires. Annotated 
gold-labels for the FHE subtask show 667 instances 
of positive training samples for the FM portion and 
930 for the OB portion. Inspection of the training 
data show high class imbalances in the FM portion 
of the task (Fig. 1). Furthermore, the OB portion 
contains 644 unique observation counts that are 
sparsely distributed, with the majority of observed 
disease states occuring only once (Fig. 2).  

B. Family Member Extraction 
The first subtask sought to extract mentions of 

the patient’s immediate family members from the 
texts. As a benchmark, a simple rule-based engine 
was first implemented using string matching against 
the provided list of relevant family members. Sides 
were detected by searching the containing sentence 
of a surfaced family member mention for the strings 
“maternal” and “paternal.”  

Run against the whole of the training set, this 
simple engine achieved an F1 of 0.8401, with 
precision and recall values of 0.7747 and 0.9175. 
Error analysis shows the engine struggled to 
distinguish when a mention referred to a patient’s 
immediate family member, for instance pulling the 
mention “Sister” out of the sentence “The patient’s 
husband’s has a sister.” (Table 1). 



 
 

 

 
 
Fig. 1. Histograms of raw counts of gold labels for the FM task show class 
imbalances in the training set by family member, side, and combined classes. 
(Top) Combined labels are skewed heavily towards “Mother NA” and “Father 
NA,” with a long tail of less frequently observed labels. (Middle) Inspection 
of the histogram of family member counts shows the preponderace of 
common family members, “Mother,” “Father,” and “Aunt,” may be the key 
contributor to the skew observed in the combined set. (Bottom) Paternal and 
maternal sides are nearly evenly distributed in the training data, but the no-
side label dominates. 

 

Fig. 2. OB Distribution in the Training Set 

As an attempt to improve on the precision of the 
rule-based engine and incorporate utterance-level 
context, a joint model was created applying a binary 
discriminative classifier to mentions surfaced 
through the rule-based engine. Given a set of 
features derived from a candidate mention 
represented as a normalized block vector, the 
classifier was tasked with determining whether the 
candidate mention was, in fact, a valid family 
member assigned the correct relation to the patient.  

The classifier was implemented using Keras as a 
multi-layer perceptron with two layers, each of 
which was activated with a ReLU nonlinearity, and 
an output layer with a sigmoid activation [4]. The 
threshold for correctly labeled mentions was set at 
0.5, and for each gold-label sample, 2 negative 
samples were generated. With a baseline feature set 
of just 5 simple indicators (Table 1), the joint model 
was able to improve on the precision of the rule-
based engine to 0.9637; however, recall fell to 
0.6762, for an overall F1 of 0.7947 calculated on a 
held-out validation set using five-fold cross-
validation. Features that did not improve overall F1 
are also reported in Table 1. 

Ultimately, given the empirical difference in F1 
scores between the rule-based and joint models, the 
rule-based engine was carried forward for use in the 
system.  

C. Observation Entity Recognition 
For the second subtask of recognizing disease 

name entities, a sequence labeling approach was 
applied inspired by successful systems for POS 
tagging and named entity recognition. For example, 
the sentence “my father has rheumatoid arthritis and 
pancreatic cancer” would have the label sequence O 
O O B B O B B, in which O represents the non-



disease entity tokens and B represents the disease 
entity tokens. For this task, we limited the number of 
possible labels to two, as the training set contained 
few numbers of observation mentions and sentences, 
930 and 1694 respectively,  with varying numbers of 
observations.  

TABLE 1. FEATURES TESTED FOR THE DISCRIMINATIVE CLASSIFIER USED IN 
A JOINT MODEL FOR FM EXTRACTION. 

 Feature Description 
Improved 
F1; 
retained 
in model 

pt_present Binary indicator for whether the word 
“patient” is in the sentence. 

pt_deps One-hot indicator for the part of 
speech of the word “patient”. 

deps One-hot indicator for the part of 
speech of the candidate mention 
(subj, dobj, pobj, etc). 

fm One-hot indicator of which family 
member was identified 

side One-hot indicator of whether the 
family member mentioned was 
maternal, paternal, or NA 

Did not 
improve 
F1; 
removed 
from 
model 
 

spacy 300-dimension span embedding for 
the sentence, derived as the average 
of token vectors from the spaCy 
library [5] 

verb 300-dimension word embedding for 
the main verb of the sentence, derived 
from the spaCy library. 

relation_ 
present 

For mentions labeled ‘maternal’ or 
‘paternal’, a binary indicator for 
whether the exact phrase, i.e. 
‘maternal uncle’, appeared. 

 

TABLE 2. ERRORS BY CATEGORY IN VALIDATION OF FM EXTRACTION 

Error Category % of errors 

Mention did not refer to a patient’s family 
member 

47.5% 

Gold-label referenced ambiguous family member 
(i.e. grandparent), but data reflected distinct 
family member (i.e. grandfather), or vice versa 

23.7% 

Model did not surface the correct family side 15.3% 

Sentence actually negated a mention  
(i.e. “The patient has no brothers.”, “The patient 
was an only child.”) 

5.1% 

Mention was not a family member (i.e. “child 
birth”) 

3.4% 

Relation inferred into another type of relation  
(i.e. uncle’s daughter → cousin) 

3.4% 

Mention present in annotation but missing from 
gold-labels (annotation error). 

1.7% 

 
Fig. 3. Overview of the BI-LSTM-CRF model applied for subtask 2. 

We experimented with one of the latest 
benchmark models for the sequence labeling 
problem, BI-LSTM-CRF. As proposed in Huang et 
al., 2015, the combination of a BI-LSTM network 
and a CRF network allows the use of not only the 
past input features and tag predictions, but also the 
future input features to increase the overall tagging 
accuracy [7]. A series of word representations pass 
through the BI-LSTM layer which produces hidden 
states for the CRF layer to yield the final output 
states for labels. For faster implementation, feature 
engineering was simplified to include only 
categorized token level embeddings by selecting 
tokens from the aggregated training vocabulary. 
Each sentence was processed to include token level 
embeddings coupled with its gold labels. 
 The model was implemented using standard 
Keras functions, with a batch size of 32, a 90-10 
training-validation split and 30 epochs. At each 
epoch, there were 1524 samples for training and 170 
samples for validation. The validation accuracy was 
0.9924 at the last epoch, including the O label 
predictions. This iteration was done following the 
experiments of using the only CRF layer and 
including the NCBI corpus with lower accuracy 
results. 

Error analysis at the token level reveals the main 
problem was in the post-processing of model 
outputs from the sentences with multiple 
observations. For instance, the model made a 
prediction “acromioclavicular infection bladder 
cancer” as a single observation, yet it should have 
been tokenized further into two separate 
observations. Also, we observed that the model 
missed or included neighboring tokens in the 
predictions (e.g. predicting “loss” from “fetal loss” or 
“cancer recently”). 



III. RESULTS 
In test, our system performed at an overall F1 of 

0.5925 (Table 3). Notably, recall was dramatically 
lower for the family member extraction portion of 
our system in test than in training-set cross-
validation, with 100 true positives (TP), 8 false 
positives (FP) and 177 false negatives (FN). This 
suggests significant domain divergence between the 
test and train datasets, which created problems for 
our rule-based FM engine. 

TABLE 3. TEST RESULTS ON THE FAMILY HISTORY EXTRACTION TASK. 

Test Run 1 FM OB Overall 

Precision 0.9259 0.6233 0.6823 

Recall 0.361 0.6247 0.5235 

F1 0.5195 0.624 0.5925 

 

IV. CONCLUSION 
In this paper, we present results from an effort to 

create a system for extraction of family members 
and relations and entity detection of disease 
observations from unstructured patient information 
questionnaires. Our results are suboptimal compared 
to the performance expected from cross-validation 
during training, but we believe our efforts provide a 
good starting point for further work. 

We attribute at least some of our suboptimal 
performance to the peculiarities of the data. The 
relatively small volume of data was particularly 
problematic for the FM extraction task, for which 
inspection of the provided gold labels showed the 
more common labels (Mother, Father) appeared at 
over twice the rate of the least common distinct 
labels (Son, Daughter) (Fig. 1).  

These class imbalances in the training data held 
back an effort to create a multi-class discriminative 
classifier for the FM extraction subtask. Brief 
experiments in this direction, out of scope for this 
paper, yielded F1 scores that varied widely, from 
3% up to 88%, between 5-fold cross-validation runs. 
Further work in FM extraction will investigate 
oversampling and undersampling approaches, 
decision trees and ensembling to correct for class 

imbalance in the classification conceptualization of 
the problem. Expanded feature engineering, for 
instance the use of vector representations of 
sentence parse trees, may also increase the success 
of a discriminative classification approach. 

More promising for the problem of FM 
extraction are context-aware analysis methods 
capable of anaphora or coreference resolution. [6] 
We postulate that such a method could be critical to 
improving performance on a task like this, in which 
roughly half of errors were produced from 
inaccurate attribution of a family member mention 
to the patient.  

For OB extraction, implementing comprehensive 
feature engineering with a more robust post-
processing method will be the next phase to improve 
the performance. With a sparse distribution of 
occurrences in the training set, more information 
about tokens such as POS tags and character-level 
embeddings will be helpful in training the model.  
Additionally, we can use sematic word embeddings 
such as GloVe or word2vec.  
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